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1. INTRODUCTION

The AirborneVisible InfraredImagingSpectrometer(AVIRIS)acquiresspectml imagingdata coveringthe
0,4- 2.5 ~m wavelength range in 224 10-nrn-wide channels flom a NASA ER-2 aircraft at 20 km, More than half
of the spectral region is affected by atmospheric gaseous absorption. Over the past decade, several techniques (Goetz
et al., 1997) have been used to remove atmospheric effects horn AVIRIS data for the derivation of surface reflectance
spectra. An operational atmosphere removal algorithm (ATREM) (Gao et al., 1993), which is based on theoretical
modeling of atmospheric absorption and scattering effects, has been developed and updated (Gao and Davis, 1997)
for deriving surface reflectance spectra from AVIRIS data, Figure 1 shows art example of a reflectance spectrum
derived with ATREM from AVIRIS data acquired over Cuprite, Nevada in June, 1995. Due to small errors in
assumed wavelengths and errors in line parameters compiled on the HITRAN database, small spikes (particularly
near the centers of the 0.94- and 1,14-~m water vapor bands) are present in this spectrum. Similar small spikes are
systematically present in entire ATREM output cubes. These spikes have distracted geologists who are interested
in studying surface mineral features, A method based on the “global” fitting of spectra with low order polynomials
or other fhnctions for removing these weak spikes has recently been developed by Boardman (this volume). In this
paper, we describe another technique, which fits spectra “locally” based on cubic spline smoothing, for quick post
processing of ATREM apparent reflectance spectra derived from AVIRIS data. Results born our analysis of AVIRIS
data acquired over Cuprite mining district in Nevada in June of 1995 are given. Comparisons between our
smoothed spectra and those derived with the empirical line method are presented.

2. METHODOLOGY

In order to describe our smoothing technique, we first describe the commonly used cubic spline “fitting”
technique, then we decribe the cubic spline “smoothing” technique.

2.1 Cubic Spline Fitting

The cubic spline fitting technique is a powerful numerical method and has been widely used in
engineering and scientific computing. For example, Numerical Recipes (Press et al., 1989) provides standard
subroutines, using cubic spline fitting method, for interpolating data between points, In order to describe
mathematically the cubic spline fitting technique, we consider an interval a < x S b , and subdivide it by a mesh

of points corresponding to the location of the data at a = XO < Xl <... < X,-l < Xj... < X, = h. An

associated set of the observed data is prescribed by -Y,,,.V1,,..,.yj, .....Y.. We seek an interpolatingfunctionh(x),

which is defined in the interval [a, b], Its first and second derivatives are continuous on [a, b] and it coincides
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Fig. 1. An exampleof a reflectancespectrumderivedwithATIU3Mfrom
AVIFZ.ISdata acquiredover Cuprite,Nevada in June, 1995.

with a cubic polynomial in each submtewal X,.l S ~ S Xj>~d satisfies the relationship hj = h(Xj) = yj.
Figure 2 illustrates the function h(x). As adapted from Ahlberg (Ahlberg et al,, 1967),the function h(x) in the
interval Xj-, S x < Xj canbe expressedas (for convenience,we assumethe problemof equallyspacedsamples

with a step size of A):

p,(x) x, s x < x,

1.
. ..

h(x) = ‘j(x) ‘j-~ S X S Xj

1.

IH,(x) X,-l < X 5X,

Wlmw
(Xj - X)3+~ (x - xj-l)~ (x - ‘j-~)

H;(x) = Sj.1 A j A + [hj-l- Sj-,
1
(xj~’) +[hj- Sj] A

Xj =XO+jA

hj = h(xj);~ = 0,1s2,..il
{sj}, the spline coefficients, can be interpreted as the normalized secondderivatives.

I ‘l%epolynomials(1) in adjacent segments are continuous at the knots:

I Hj(Xj) = hj = Hj+,(Xj).

I The first derivative is continuous at the knot provided that

Sj-, i- 4sj + Sj+,= hj-l – 2hj + hj,l .

The second derivative is continuous at the knots

(1)

(2)
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Figure 2: An illustration of the interpolating function h(y).

~~(XJ) = H;+*(Xj) = $Sj.

The polynomials (1) are determined by specification of {s,}. The selection of these spline coefficients can involve
any number of imposed weak constraints that characterize the spline fitting. One of the constraints is the
minimization of the second derivative. Because

J;.l[~”@OX=;[s;-, +s2+s ]j j-lsj
*

it follows that the quantity (s~-l +s; + Sj-lsj
1 is to be minimized in any kind of variational selections of {~j}.

The-simplest quadratic form to minimize is

J

2 1
s;-, + s; + sj_, sj .

j=l

However, this is not enough to guarantee continuity of the derivatives at the knots. A method to incorporate the
condition

Sj-, + 4Sj + 4SJ+,
(- hj_l -2hj+hj+, )=0

must be found. This is done by introducing Lagrangian multipliers.

The simple spline formulation for the minimization is



~[(sj)]=~[s~-l +S; +Sj-lSJ ]+2~Aj[Sj-, +LIS, +S,+, -(h,.,-2hj +hj+l)] IS,
j=l J=l

where Ajs are the Lagrangian multipliers. These conditions are exactly satisfied upon completion of the

minimization so that zeros are in effect added to the quantity to be minimized.

The procedure of solving those Ajs, therefore, the spline coefllcients {sj}, and the interpolating splines

{hj }, is similar to that of spline smoothing to be described in the next section,

2.2 Cubic Spline Smoothing

In the Spline fitting technique described above, the { /zj } are taken to represent errorless data or

observations, and the spline passes each point yj, However, there can be circumstances that the observations are

contaminated and unwanted noises are present. For example, in our case raw spectra exhibit coherent sawtooth like
“noises”, Under these circumstances, the data integrity condition should be relaxed. This can be done by adding a.

weak constraint term, ~[~j ‘Yjr toEq. (3), where ~j istheobserveddata, andonlya%estfit’’shouldbe
jd

sought. The smoothed spline {h, } does not necessarily pass original observed data {yj }, unlike the case of the

spline fitting. An appropriate discrepancy sum can be formed as

J

E[{Sj}${hj}] = 72 ~[sy.j + ‘f + ‘j-lsj l+~[hj-%r

J-1
j=O

‘2~aj[sj-l ~ 4sj + ‘j+] (- hj-, - 2hj + hj+,)],
j=l

(4)

where 72 is an adjustable weighting factor. As it increases, the tension of the spline smoothing increases, i.e., the
curve “flattens out”. On the other hand, as it decreases, the observed data are reproduced more closely at the
expense of increased curvature,

The variations on the spline coefficients are tabulated as:

8s0 ?2(2s0 + s]) + 2a = o

as, 72(sO+4s, +sz)+2~+8~+2& =0
..

)~j T2(sj_l + 4Sj + Sj+l + 22j-1 + 8Aj + 2Aj+j = O ~ = 2,...>(J _ 2) (5)

..

& J-1 T2(SJ_2 + 4s,-1 + SJ) + 2A,-Z + 8A,_l = O

&J ~2(SJ-, + s])+ 2AJ-I =0

The variations on the multipliers lead to

daj : sj-l +4sj +Sj+l = hj-l _2hj +hj+l; j = ],(J_\) (6)

Since the spline does not pass the data {yj ), the {hj } are no longer fixed; their variations are listed below:



4 2(4- yo)-24 = o

(7)

& 2(~-y, )+4&-2~ =0

.

&j 2(kj –yj)-2Zj_l +4Aj -2Aj+l = O j = 2,..., (2)2)

.

c%,., Z(h,-, - Y,.,) - 22,-, + 4A,-., = o
6/$ 2(h, - y,) - 2A,-, = o

Combiningtermsin (7),we have

[hj-1 _ zhj + hj+l]- [Yj-l _ zyj + Yj+l] = aj_2 _ Aaj_l + 6aj _ Aaj+l + aj+2 (8)

[ 1Each of the combinations Sj-l + x~j + $’j+l ;.)“= 1,,.., (J - 1) in (5) can be replaced by their equivalents from

(6) to obtain the following equations,

&, : T2(~-2~-~)+8~+2~

&j: T2(hJ_1 _ 2hj _ hj+l)+2Aj.1+8Aj+Zaj+i
(%J-1 : Tz(& -21 -~)+ 2aJ-~ + 8aJ-~

The [hj-l - 2hj + hj+,] in (9) can be replaced by the groupings in (8)

&, T2[A2N2yl + (6L – 4A2 + ~)]+ 8A + 2A

. . ..

&j
[

T*A2tt2yj+ (Aj-2 _ 4Aj-1+ 6Aj _ 4Aj+, + Aj+2)]+22j_l + 8dj + 2Aj+1 = O ~ = 3>...,(J _ 3)
. .. .

f%J-2 T2[A2~2yJ-2 + (aJ-d - 4AJ-3 + 6AJ-2 - 41J-I )] + 2AJ-~ + 82J-2 + 2AJ-I = O

1%J-1 - T*[A*N*YJ-l+ (6AJ-j- 4aJ-2 + A,-l)]+2AJ_2 + 81J-1 = o

Yj-1 - 2Yj + Yj+l
where H*yj = A2

The {Aj}are then found as solutions of
AA= y~~

(10)

(11)

where A is the pentadiagonal matrix
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Here the matrix elementsare constantsand givenby

: : (2::7’)

c = (8+6T’)

and

Y’‘ H
H’y,

tz’y’

_~2T2 “

U’yj

.

H’Y,.,

(12)

(13)

Giventhe {Aj}, the {hj } canbe determineddirectlyfrom(8), and the spline coefficients {Sj } can be found as a

tridiagonal solution of (5),

3. POST PROCESSING OF ATREM REFLECTANCE CUBE

The small spikes, as seen in Fig, 1, are systematically present in all spectra in an ATREM output data
cube. We hope to make mild “gain” adjustments to remove these small spikes during our post processing of the
ATREM data cube. Specifically, we hope to fmd a gain function, g( 2), which contains all the weak spikes and
which has a mean value close to 1. The multiplication of g( Z) to the ATREM output spectra should allow the
removal of the systematic small spikes, Several steps are involved in our post processing of an ATREM output
data cube. They are:

a). The cubic spline smoothing technique described in Section 2 is applied to each of the spectra in the
ATREM data cube, As a result, an intermediate “smoothed” data cube is produced. Because the cubic spline
smoothing technique fits a spectrum“locally”,most of the smoothedspectra at this stage match quite well with
the ATREM spectra, Jf the spectra were fit with low order Legendre polynomials “globally”, only a minor fraction
of the smoothed spectra would match well with the ATREM spectra.

b). The average reflectance, p ,,~, is calculated for each of the spectra in the ATREM output data cube.
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Fig, 3. A sample gain spectrum.

c). For each pixel, the standarddeviation, 0, between the ATREM spectrum and the “smoothed”
spectrum is calculated.

d). For an AVIRIS scene, a scatter plot of 0/P,,* V.S. ~..~ is made, Pixels with 0/P,v~ values in the
lower twenty percentile are identified,

e), For each of the pixels identifiedin Step d, a mtio spectrum(“smoothed”spectrum/ ATREM
spectrum) is calculated.Our desired gain spectrum,g( 2), is obtainedby averagingall the ratio spectra. Figure 3
shows an example of a gain spectrum,which containsa number of weak spikes in the 0.4 -2.5 Vmspectral region.

f). The gain spectmm is appliedto each of the spectra in the ATREM output &ta cube to obtain the
“final” smoothed data cube.

Our algorithm for smoothing the ATREM output data cube is fast. It takes about 3 minutes on a SGI
machine with a 150 MHz processor to process one complete data cube.

4. PRELIMINARY RESULTS

Results fkom one set of AVIRIS data acquired over the Cuprite Mining District in Nevada in June, 1995
are described below. Figure 4 shows a comparison among an ATREM reflectance specbum over a single pixel, the
smoothed spectrum, and the reflectance spectrum obtained with the well known empirical line method (Conel et
uf., 1987). For clarity, the spectra in Fig. 4 are vertically displaced. The general shapes of these spectra in the 0.4-
1.26 ym, 1,5-1.75 pm, and 2.0- 2.5 pm wavelength intervals are very similar. Major mineral features in the 2.0
-2.5 ym region are seen in all the specba. The un-smoothed ATREM spectrum has quite a few weak spikes.
These spikes are largely removed in the smoothed spectrum. The spectrum derived with the empirical line method
shows weak inverse water vapor features near 0..94 and 1,14 pm. This indicates that the method resu)ts in a slight
over-correction of atmospheric water vapor absorption effects for this pixel.

Figure 5 shows six ATREM reflectance spectra (vertically displaced for clarity). These spectra have
distinct mineral absorption features in the 2.0- 2.5 ~ spectral region. Weak spikes (for example near 1.14 ~m)
are systematically present in all the spectra. Figure 6 shows the corresponding smoothed spectra, which look very
similar to Iaboratoymeasured reflectance spectra, particularly in the 2.0 -2.5 v spectral region. Weak spikes are
all removed, A broad iron feature near 0.9 ~m is seen nicely in one spectrum - the 4th spectrum ilom top. Figure 7



~

— Empirical Line Data

— Smoothed Data

— ATREMData

0.6

0.4

0.2

0.0
0.5 l.O 1.5 2.0 2.s

WAVELENGTH(~m)

Fig. 4. A comparisonamong an ATREMreflectancespectrum,a smoothed
spectrum, and a reflectance spectrum obtained with the empirical).

shows six spectra derived from the AVIRIS data with the empirical line method, Mineral features in the 2.0 -2.5
~ region are recovered quite well with this method. However, water vapor features in the 0.94 and 1.14 ~
regions are either over- or under- corrected. The broad iron feature in the 4th spectrum from the top is not clearly
seen due to the over-comection of atmospheric water vapor absorption effects. By comparing Figures 5,6 and 7, it
is seen that major mineral features are preserved during our smoothing of the ATREM reflectance cube.

5. SUMMARY

We have described a technique, which fits spectra “locally” based on cubic spline smoothing, for quick
post processing of apparent reflectance spectra derived from AVIRIS data using the ATREM code. Results iiom our
analysis of AVIRIS data acquired over Cuprite mining district in Nevada in June of 1995 are presented. Very good
agreement between our results and those of empirical line method in the 2,0 -2.5 pm spectral region is obtained. It
appears that the use of ATREM code for retrieving surface reflectance spectra fiorn AVIRIS data plus the use of the
smoothing technique described in this paper should yield surfkce reflectance spectra that look very similar to
laboratory-mt%sured reflectance spectra.
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